Applied Antineutrino Physics Workshop

An Alternative Design based on Inverse Beta Detection

Jim Lund Sandia National Laboratories

- History
- The immediate future
- The 2-3 yr. time frame
- The beehive
- Summary

History

- Our first generation detector
 - Conservative design
 - It works!
 - Inefficient
 - Big

Immediate Future

- The next generation detector
 - To be deployed quickly (mid 2007)
 - More efficient
 - A straightforward extension of existing work
 - Much better electronics
 - Probably a Gd loaded scintillator with better optics and more hermetic muon veto

Intermediate future (2 to 3 yr.)

– My pitch!

A relatively advanced

inverse beta design

- Smaller!

– More efficient!

Proposed Design for 2 to 3 yr. Timeframe "The Beehive"

- Liquid scintillator (~1 m³)
- Honeycomb partition immersed in liquid scintillator
- Thin acrylic honeycomb coated with ⁶LiF:ZnS(Ag) scintillator
- Read out with ~100 PMTs

Proposed Design

A neutrino hit in the proposed design

- Neutrino interaction signature
 - Positron
 - one cell (discounting annihilation photons)
 - Electron-like event in liquid scintillator (fast pulse decay)
 - Neutron
 - Bright ZnS pulse in two adjacent cells about ~10 μs after positron

Background events Fast neutron enters detector

Existing Detector

- Mimics antineutrino capture
 - Pulse from n-p scatter
 - Followed by n-capture on Gd

Proposed Detector

- Cut because:
 - n-p scatter
 distinguishable from
 pulse shape

Background events fast neutron into detector

Background events slow neutron into detector coincident with gamma ray

Existing Detector

- Mimics antineutrino capture
 - Pulse from n-p scatter
 - Followed be n-cature on Gd

• Cut because:

Gamma event very unlikely to be in same cell as neutron event

$$\overline{v_e} + p \rightarrow e^+ + n$$

$$v + e^-$$
; $n + {}^6Li$

Background events two chance gamma-rays within time window

Existing Detector

Mimics antineutrino capture

Proposed Detector

Cut because:

No signal from ZnS scintillator

gammas do not deposit enough energy in ZnS and light from neutron on Li is very large = Q= 4.8 MeV

Light pulses from more than one cell

Beehive Detector

$$\overline{v_e} + p \rightarrow e^+ + n$$

- More efficient than existing detector
 - Due to ~100% effiency of neutron capture reaction in ⁶LiF:ZnS(Ag) scintillator
- Greater background rejection
 - Phase space of signal cuts is much richer; easier to classify events
 - Spatial, pulse shape, and two types of scintillator

But Wait, There's More! Some directionality!

But Wait, There's More! Some directionality!

- Although neutron diffusion is a random walk, a slowing neutron preserves a memory (if sloppy) of its original momentum.
- This property has been observed and exploited in neutrino detection before.

FIG. 5. The shift (solid line) $\langle x \rangle$ and width (long-dashed line) $\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$ for monoenergetic neutrons (initial kinetic energy T_n) emitted from the origin, moving initially along the x-axis. Note $\langle y \rangle = \langle z \rangle = 0$, and $\sigma_x = \sigma_y = \sigma_z$. We used a $(\text{CH}_2)_n$ liquid of density 0.80 g/cm³, with or without 0.1% Gd doping by mass.

A recent experiment

Summary and Acknowledgements

- A highly segmented detector with ⁶LiF:ZnS(Ag) scintillator partitions looks very attractive for monitoring of reactor antineutrinos.
- We want to do some design experiments!
- We are very, very grateful to Sandia National Laboratories for giving us funding to study this concept under a Laboratory Directed Research and Development project:
 - Project Title: Neutrino Detection Technology Development Project Number: 102607

